Perturbation theory for the LDU factorization and accurate computations for diagonally dominant matrices
نویسندگان
چکیده
We present a structured perturbation theory for the LDU factorization of (row) diagonally dominant matrices and we use this theory to prove that a recent algorithm of Ye (Math Comp 77(264):2195–2230, 2008) computes the L , D andU factors of these matrices with relative errors less than 14n3u, where u is the unit roundoff and n × n is the size of the matrix. The relative errors for D are componentwise and for L and U are normwise with respect the “max norm” ‖A‖M = maxi j |ai j |. These error bounds guarantee that for any diagonally dominant matrix A we can compute accurately its singular value decomposition and the solution of the linear system Ax = b for most vectors b, independently of themagnitude of the traditional condition number of A and in O(n3) flops. Mathematics Subject Classification (2000) 65F05 · 65F15 · 15A18 · 15A23 · 15B99
منابع مشابه
New Relative Perturbation Bounds for Ldu Factorizations of Diagonally Dominant Matrices
This work introduces new relative perturbation bounds for the LDU factorization of (row) diagonally dominant matrices under structure-preserving componentwise perturbations. These bounds establish that if (row) diagonally dominant matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these parameters produce ti...
متن کاملA New Perturbation Bound for the LDU Factorization of Diagonally Dominant Matrices
This work introduces a new perturbation bound for the L factor of the LDU factorization of (row) diagonally dominant matrices computed via the column diagonal dominance pivoting strategy. This strategy yields L and U factors which are always well-conditioned and, so, the LDU factorization is guaranteed to be a rank-revealing decomposition. The new bound together with those for the D and U facto...
متن کاملRelative Perturbation Theory for Diagonally Dominant Matrices
OF DISSERTATION RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT MATRICES Diagonally dominant matrices arise in many applications. In this work, we exploit the structure of diagonally dominant matrices to provide sharp entrywise relative perturbation bounds. We first generalize the results of Dopico and Koev to provide relative perturbation bounds for the LDU factorization with a well condi...
متن کاملEla Accurate and Efficient Ldu Decompositions of Diagonally Dominant M-matrices
An efficient method for the computation to high relative accuracy of the LDU decomposition of an n × n row diagonally dominant M–matrix is presented, assuming that the off–diagonal entries and row sums are given. This method costs an additional O(n) elementary operations over the cost of Gaussian elimination, and leads to a lower triangular, column diagonally dominant matrix and an upper triang...
متن کاملBounding the error in Gaussian elimination for tridiagonal systems
If is the computed solution to a tridiagonal system Ax b obtained by Gaussian elimination, what is the "best" bound available for the error x and how can it be computed efficiently? This question is answered using backward error analysis, perturbation theory, and properties of the LU factorization of A. For three practically important classes of tridiagonal matrix, those that are symmetric posi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 119 شماره
صفحات -
تاریخ انتشار 2011